Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 624(7991): 295-302, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092907

ABSTRACT

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Subject(s)
Electrophysiology , Polymers , Water , Animals , alpha-Cyclodextrins/chemistry , Electrodes , Electrophysiology/instrumentation , Electrophysiology/methods , Electrophysiology/trends , Heart , Muscles , Polyethylene Glycols/chemistry , Polymers/chemistry , Silk/chemistry , Spiders , Water/chemistry , Hydrogels/chemistry , Electronics/instrumentation , Electronics/methods , Electronics/trends
2.
RSC Adv ; 13(49): 34772-34781, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38035226

ABSTRACT

Drilling engineering plays a pivotal role in the exploration and extraction of subsurface resources. It heavily depends on drilling fluid, which serves various essential functions including cooling the drill bit, removing drilled cuttings, maintaining formation pressure equilibrium, stabilizing the wellbore, transmitting hydraulic pressure, and safeguarding oil and gas reservoirs. Nonetheless, drilling fluid encounters multiple obstacles such as leakage control, waste fluid management, prevention of wellbore collapse, avoidance of hole enlargement, and environmental preservation. In order to surmount these challenges, the introduction of lubricants into the drilling fluid yields a multitude of advantages, encompassing equipment safeguarding, enhanced drilling efficiency, preservation of wellbore integrity, and bolstered drilling safety. These factors hold crucial significance in ensuring the triumph of drilling operations. This paper presents the introduction of a new lubricant derived from triolein. Following the preparation of graphene and triolein, they were incorporated into the drilling fluid system. A set of tests was subsequently conducted after aging at 240 °C for 16 hours. To assess the impact of the lubricant on the drilling fluid, an examination of rheological and filtration properties was conducted. Additionally, investigations into the friction coefficient, adhesion coefficient, and extreme pressure lubricity were carried out to evaluate the lubricating performance of the drilling fluid. Adding lubricants at a temperature of 240 degrees Celsius has successfully controlled the adhesion coefficient of the drilling fluid to below 0.2, reaching a minimum of 0.055, resulting in a reduction rate of over 70%. This indicates that the lubricant performs well at high temperatures, effectively reducing friction and enhancing drilling speed.

3.
Chem Commun (Camb) ; 59(91): 13595-13598, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37888889

ABSTRACT

A convenient strategy for fabricating a wearable sensor with favorable durability and sensitivity is reported. This approach exploits the reconstructed hydrogen bonds within the thermoplastic polyurethane (TPU) during the heating evaporation of metal to form robust welding of the fibers in the substrate. The sensor can steadily monitor pulse waves and facilitate real-time human-machine interaction.

4.
ACS Nano ; 17(3): 2134-2147, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688948

ABSTRACT

A tactile sensor needs to perceive static pressures and dynamic forces in real-time with high accuracy for early diagnosis of diseases and development of intelligent medical prosthetics. However, biomechanical and external mechanical signals are always aliased (including variable physiological and pathological events and motion artifacts), bringing great challenges to precise identification of the signals of interest (SOI). Although the existing signal segmentation methods can extract SOI and remove artifacts by blind source separation and/or additional filters, they may restrict the recognizable patterns of the device, and even cause signal distortion. Herein, an in-memory tactile sensor (IMT) with a dynamically adjustable steep-slope region (SSR) and nanocavity-induced nonvolatility (retention time >1000 s) is proposed on the basis of a machano-gated transistor, which directly transduces the tactile stimuli to various dope states of the channel. The programmable SSR endows the sensor with a critical window of responsiveness, realizing the perception of signals on demand. Owing to the nonvolatility of the sensor, the mapping of mechanical cues with high spatiotemporal accuracy and associative learning between two physical inputs are realized, contributing to the accurate assessment of the tissue health status and ultralow-power (about 25.1 µW) identification of an occasionally occurring tremor.


Subject(s)
Artifacts , Time Perception , Touch/physiology , Pressure , Motion
5.
Phys Chem Chem Phys ; 20(1): 489-497, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29214274

ABSTRACT

The mechanism of nucleophilic substitution deserves more investigation to include more reaction systems such as two-dimensional (2D) materials. In this study, we used fluorinated graphene (FG) as a representative 2D material to reveal the in-depth mechanism of its defluorination and nucleophilic substitution reaction under attack of common nucleophiles to explore the chemistry of 2D materials and enrich the research on the nucleophilic substitution reaction. DFT calculations and electron paramagnetic resonance spectroscopy (EPR) demonstrated that defluorination of FG occurred via a radical mechanism after a single electron transfer (SET) reaction between the nucleophile and C-F bond, and a spin center was generated on the nanosheet and fluorine anion. Moreover, neither the SN1 nor SN2 mechanism was suggested to be appropriate for the substitution reaction of FG with a 2D structure due to the corresponding kinetics or thermodynamics disadvantage; hence, its nucleophilic substitution was proved to occur via a radical mechanism initiated by the defluorination step. The proposed substitution mechanism of FG demonstrates that nucleophilic substitution via a radical mechanism can also be applied to the attacking process of common nucleophiles without any particular conditions. Furthermore, it has been discovered that triethylamine without active hydrogen can be covalently attached to graphene nanosheets via a nucleophilic substitution reaction with FG; this further indicates a radical process for the nucleophilic substitution of FG rather than an SN1 or SN2 mechanism. The detailed process of the nucleophilic substitution reaction of FG was revealed to occur via a radical mechanism depending on the 2D structure of FG, which could also represent the typical characteristic of 2D chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...